2024
[64] T. Y. Ha†, S. H. Jeong†, and C. Baig* "Interfacial polymer rheology of entangled short-chain branched ring melts in shear flow", Macromolecules 57, 6177-6189 (2024). [Link]
[63] D. Choe†, S. H. Jeong†, and C. Baig* "Structural, topological, and rheological characteristics of entangled short-chain branched polymer melts under shear flow in comparison with the linear analog", J. Rheol. 68, 591-601 (2024).
[Selected as Featured article] [Link]
2023
[62] S. H. Jeong†, S. Cho, and C. Baig* "Chain rotational dynamics in dilute polymer solutions and melts under shear flow", Polymer 281, 126101 (2023). [Link]
2021
[61] J. Kim†, J. M. Kim†, and C. Baig* "Intrinsic structure and dynamics of monolayer ring polymer melts", Soft Matter 17, 10703-10715 (2021). [Link]
[60] S. H. Jeong†, T. Y. Ha†, S. Cho†, E. J. Roh†, J. M. Kim, and C. Baig* "Melt rheology of short-chain branched ring polymers in shear flow", Macromolecules 54, 10350-10359 (2021). [Link]
[59] Y. Lee†, J. Myoung†, S. Cho†, J. Park, J. Kim, H. Lee, S. Lee, C. Baig* and H. Ko* "Bio-Inspired Gradient Conductivity and Stiffness for Ultrasensitive Electronic Skins", ACS Nano 15, 1795-1804 (2021). [Link]
[58] J. Kim†, J. M. Kim†, and C. Baig* "Intrinsic Chain Stiffness in Flexible Linear Polymers under Extreme Confinement", Polymer 213, 123308 (2021). [Link]
2020
[57] S. H. Jeong†, S. Cho†, T. Y. Ha†, E. J. Roh, and C. Baig* "Structural and Dynamical Characteristics of Short-Chain Branched Ring Polymer Melts at Interface under Shear Flow", Polymers 12, 3068 (2020). [Link]
[56] S. H. Jeong†, S. Cho†, E. J. Roh†, T. Y. Ha†, J. M. Kim†, and C. Baig* "Intrinsic surface characteristics and dynamic mechanisms of ring polymer solutions and melts under shear flow", Macromolecules 53, 10051-10060 (2020). [Link]
[55] S. Jeong and C. Baig* "Molecular Process of Stress Relaxation for Sheared Polymer Melts", Polymer 202, 122683 (2020). [Link]
[54] E. Shin†, C. Lim†, U. Kang†, M. Kim, J. Park, D. Kim, C. Baig*, D. Lee*, and B. Kim* "Mussel-Inspired Copolyether Loop with Superior Antifouling Behavior", Macromolecules 53, 3551-3562 (2020). [Link]
[53] S. Cho†, J. M. Kim†, and C. Baig* "Scaling Characteristics of Rotational Dynamics and Rheology of Linear Polymer Melts in Shear Flow", Macromolecules 53, 3030-3041 (2020). [Link]
2019
[52] E. J. Roh and C. Baig* "Nonequilibrium Monte Carlo simulations of entangled polymer melts under steady shear flow", Soft Matter 15, 5271-5281 (2019). [Link]
[51] E. J. Roh, J. M. Kim, and C. Baig* "Molecular Dynamics Study on the Structure and Relaxation of Short-Chain Branched
Ring Polymer Melts", Polymer 175, 107-117 (2019). [Link]
[50] J. Park†, Y. Lee†, M. H. Barbee†, S. Cho†, S. Cho, R. Shanker, J. Kim, J. Myoung, M. P. Kim, C. Baig,* S. L. Craig,* and H. Ko* "Hierarchical nanoparticle-in-micropore architecture for enhanced mechanosensitivity and stretchability in mechanochromic electronic skins", Adv. Mater. 1808148 (2019). [Link]
2018
[49] S. H. Jeong†, J. M. Kim†, C. Baig* "Rheological behaviors of H-shaped polymers incorporated with short branches under shear and elongational flows via FENE-Rouse model", J. Rheol. 62, 1115-1124 (2018). [Link]
[48] S. Jeong, S. Cho, J. M. Kim, and C. Baig* "Interfacial Molecular Structure and Dynamics of Confined Ring Polymer Melts under Shear Flow", Macromolecules 51, 4670-4677 (2018). [Link]
[47] K. M. Kim, T. Wijerathne, J. H. Hur, U. J. Kang, I. H. Kim, Y. C. Kweon, A. R. Lee, S. J. Jeong, S. K. Lee, Y. Y. Lee, B. W. Sim, J. H. Lee, C. Baig, S. U. Kim, K. T. Chang, K. P. Lee, and C. Y. Park,* "Distinct gating mechanism of SOC channel involving STIM–Orai coupling and an intramolecular interaction of Orai in Caenorhabditis elegans", Proc. Natl. Acad. Sci. 115, 4623-4643 (2018). [Link]
[46] Y. Lee†, J. Park†, S. Cho, Y. E. Shin, H. Lee, J. Kim, J. Myoung, S. Kang, C. Baig, and H. Ko,* "Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range", ACS Nano 12, 4045–4054 (2018). [Link]
[45] M. Ha†, S. Lim†, S. Cho†, Y. Lee, S. Na, C. Baig,* and H. Ko,* "Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly-Sensitive Triboelectric Sensors", ACS Nano 12, 3964–3974 (2018). [Link]
[44] D. Y. Kim†, D. C. Yang†, J. M. L. Madridejos, A. H. Teymourloei, C. Baig, and K. S. Kim,* "Anisotropic and amphoteric characteristics of diverse carbenes", Phys. Chem. Chem. Phys. 20, 13722-13733 (2018). [Link]
2017
[43] S. Jeong†, J. M. Kim†, and C. Baig,* "Molecular Characteristics of Stress Overshoot for Polymer Melts under Start-up Shear Flow " J. Chem. Phys. 147, 234901 (2017). [Link]
[42] S. Jeong†, J. M. Kim†, S. Cho, and C. Baig,* "Effect of Short-Chain Branching on Interfacial Polymer Structure and Dynamics under Shear Flow", Soft Matter 13, 8644-8650 (2017). [Link]
[41] S. Cho, S. Jeong, J. M. Kim,* and C. Baig,* "Molecular dynamics for linear polymer melts in bulk and confined systems under shear flow", Sci. Rep. 7, 9004 (2017). [Link]
[40] M. Ha†, D. Y. Kim†, N. Li, J. M. L. Madridejos, I. K. Park, I. S. Youn, J. Lee, C. Baig, M. Filatov, S. K. Min,* G. Lee,* and K. S. Kim,* "Adsorption of Carbon Tetrahalides on Coronene and Graphene", J. Phys. Chem. C 121, 14968-14974 (2017). [Link]
[39] S. H. Jeong, J. M. Kim and C. Baig,* "Rheological Influence of Short-Chain Branching for Polymeric Materials under Shear with Variable Branch Density and Branching Architecture", Macromolecules 50, 4491-4500 (2017). [Link]
[38] D. Y. Kim, J. M. L Madridejos, M. Ha, J. H. Kim, D. C. M. Yang, C. Baig, and K. S. Kim,* "Size-dependent conformational change in halogen-π interaction: from benzene to graphene", Chem. Commun. 53, 6140-6143 (2017). [Link]
[37] S. Jeong†, J. M. Kim† and C. Baig,* "Effect of Chain Orientation and Stretch on the Stress Overshoot of Entangled Polymeric Materials under Start-up Shear", Macromolecules 50, 3424-3429 (2017). [Link]
[36] S. Jeong, S. Cho, J.M. Kim and C. Baig,* "Molecular mechanisms of interfacial slip for polymer melts under shear flow", J. Rheol. 61, 253-264 (2017). [News Mention] & [2017 SPE Korea Award] & [Top 10 Hottest JOR Articles] [Link]
2016
[35] I.S. Yoon†, D.Y. Kim†, W.J. Cho†, J.M.L Madridejos, H.M. Lee, M. Kołaski, J. Lee, C. Baig, S.K. Shin, M. Filatov and K.S. Kim,* "Halogen-pi Interactions between Benzene and X-2/CX4 (X = Cl, Br): Assessment of Various Density Functionals with Respect to CCSD(T)", J. Phys. Chem. A 120, 9305-9314 (2016). [Link]
[34] J. Yoon, J. Kim and C. Baig,* "Nonequilibrium molecular dynamics study of ring polymer melts under shear and elongation flows: A comparison with their linear analogues", J. Rheol. 60, 673-685 (2016). [Link]
[33] S.H. Jeong, J.M. Kim, J. Yoon, C. Tzoumanekas, M. Kröger and C. Baig,* "Influence of molecular architecture on entanglement network: topological analysis of linear, long- and short-chain branched polyethylene melts via Monte Carlo simulation", Soft Matter 12, 3770-3786 (2016). [Link]
[32] C. Baig, "Torsional Linearity in Nonlinear Stress-Optical Regimes for Polymeric Materials", ACS Macro Lett. 5, 273-277 (2016). [Link]
[31] J.M. Kim and C. Baig,* "Communication: Role of short chain branching in polymer structure and dynamics", J. Chem. Phys. 144, 081101 (2016). [2016 Editor's Choice] [Link]
[30] J.M. Kim and C. Baig,* "Precise Analysis of Polymer Rotational Dynamics", Sci. Rep. 6, 19127 (2016). [Link]
2013
[29] D.G. Tsalikis, C. Baig, V.G. Mavrantzas, E. Amanatides* and D. Mataras,* "A hybrid kinetic Monte Carlo method for simulating silicon films grown by plasma-enhanced chemical vapor deposition", J. Chem. Phys. 139, 204706-1-204701-14 (2013). [Link]
2011
[28] P.S. Stephanou, C. Baig,* and V.G. Mavrantzas,* “Toward an improved description of constraint release and contour length fluctuations in tube models for entangled polymer melts guided by atomistic simulations”, Macromol. Theory Simul. 20, 752-768 (2011). [Link]
[27] C. Baig,* V.G. Mavrantzas, and H.C. Öttinger, “On Maxwell’s relations of thermodynamics for polymeric liquids away from equilibrium”, Macromolecules 44, 640-646 (2011). [Link]
[26] P.S. Stephanou, C. Baig,* and V.G. Mavrantzas,* “Projection of atomistic simulation data for the dynamics of entangled polymers onto the tube theory: Calculation of the segment survival probability function and comparison with modern tube model”, Soft Matter 7, 380-395 (2011). [Link]
2010
[25] G. Tsolou, N. Stratikis, C. Baig,* P.S. Stephanou, and V.G. Mavrantzas,* “Melt Structure and Dynamics of Unentangled Polyethylene Rings: Rouse Theory, Atomistic Molecular Dynamics Simulation, and Comparison with the Linear Analogues”, Macromolecules 43, 10692-10713 (2010). [Link]
[24] C. Baig, P.S. Stephanou, G. Tsolou, V.G. Mavrantzas,* and M. Kröger, “Understanding dynamics in binary mixtures of entangled cis-1,4-polybutadiene melts at the level of primitive path segments by mapping atomistic simulation data onto the tube model”, Macromolecules 43, 8239-8250 (2010). [Link]
[23] C. Baig and V.G. Mavrantzas,* “From atomistic trajectories to primitive paths to tube models: Linking atomistic simulations with the reptation theory of polymer dynamics”, Soft Matter 6, 4603-4612 (2010).
[Invited paper for Highlight] [Link]
[22] C. Baig,* V.G. Mavrantzas, and M. Kröger, “Flow effects on melt structure and entanglement network of linear polymers: Results from a nonequilibrium molecular dynamics simulation study of a polyethylene melt in steady shear”, Macromolecules 43, 6886-6902 (2010). [Link]
[21] C. Baig* and B.J. Edwards,* “Atomistic simulation of crystallization of a polyethylene melt in steady uniaxial extension”, J. Non-Newtonian Fluid Mech. 165, 992-1004 (2010). [Link]
[20] C. Baig* and B.J. Edwards,* “Analysis of the configurational temperature of polymeric liquids under shear and elongational flows using nonequilibrium molecular dynamics and Monte Carlo simulations”, J. Chem. Phys. 132, 184906 (2010). [Link]
[19] P.S. Stephanou, C. Baig, G. Tsolou, V.G. Mavrantzas,* and M. Kröger, “Quantifying chain reptation in entangled polymer melts: Topological and dynamical mapping of atomistic simulation results onto the tube model”, J. Chem. Phys. 132, 124904 (2010). [Link]
[18] C. Baig* and V.A. Harmandaris,* “Quantitative analysis on the validity of a coarse-grained model for nonequilibrium polymeric liquids under flow”, Macromolecules 43, 3156-3160 (2010). [Link]
[17] C. Baig* and B.J. Edwards,* “Atomistic simulation of flow-induced crystallization at constant temperature”, Europhys. Lett. 89, 36003 (2010). [Link]
[16] C. Baig, O. Alexiadis, and V.G. Mavrantzas,* “Advanced Monte Carlo algorithm for the atomistic simulation of short- and long-chain branched polymers: Implementation for model H-Shaped, A3AA3 multiarm (Pom-Pom), and short-chain branched polyethylene melts”, Macromolecules 43, 986-1002 (2010). [Link]
[15] C. Baig* and V.G. Mavrantzas,* “Tension thickening, molecular shape, and flow birefringence of an H-shaped polymer melt in steady shear and planar extension”, J. Chem. Phys. 132, 014904 (2010). [Link]
2009
[14] C. Baig* and V.G. Mavrantzas,* “Multiscale simulation of polymer melt viscoelasticity: Expanded-ensemble Monte Carlo coupled with atomistic nonequilibrium molecular dynamics”, Phys. Rev. B 79, 144302 (2009). [Link]
[13] P.S. Stephanou, C. Baig, and V.G. Mavrantzas,* “A generalized differential constitutive equation for polymer melts based on principles of non-equilibrium thermodynamics”, J. Rheol. 53, 309-337 (2009). [Link]
2008
[12] D.J. Keffer,* C. Baig, P. Adhangale, and B.J. Edwards, “A generalized Hamiltonian-based algorithm for rigorous equilibrium molecular dynamics simulations in the canonical ensemble”, J. Non-Newtonian Fluid Mech. 152, 129-139 (2008). [Link]
2007
[11] C. Baig and V.G. Mavrantzas,* “Thermodynamically guided nonequilibrium Monte Carlo method for generating realistic shear flows in polymeric systems”, Phys. Rev. Lett. 99, 257801 (2007). [Link]
[10] C. Baig, B.J. Edwards,* and D.J. Keffer, “A molecular dynamics study of the stress-optical behavior of a linear short-chain polyethylene melt under shear”, Rheol. Acta 46, 1171-1186 (2007). [Link]
2006
[9] C. Baig, B. Jiang, B.J. Edwards,* D.J. Keffer, and H.D. Cochran, “A comparison of simple rheological models and simulations data of n-hexadecane under shear and elongational flows”, J. Rheol. 50, 625-640 (2006). [Link]
[8] B.J. Edwards,* C. Baig, and D.J. Keffer, “A validation of the p-SLLOD equations of motion for homogeneous steady-state flows”, J. Chem. Phys. 124, 194104 (2006). [Link]
[7] D.J. Keffer,* C. Baig, P. Adhangale, and B.J. Edwards, “A generalized Hamiltonian-based algorithm for rigorous equilibrium molecular dynamics simulation in the isobaric-isothermal ensemble”, Mol. Sim. 32, 345-356 (2006). [Link]
[6] C. Baig, B.J. Edwards,* D.J. Keffer, and H.D. Cochran, and V.A. Harmandaris, “Rheological and structural studies of linear polyethylene melts under planar elongational flow using nonequilibrium molecular dynamics simulations”, J. Chem. Phys. 124, 084902 (2006). [Link]
[5] T.C. Ionescu, C. Baig, B.J. Edwards,* D.J. Keffer, and A. Habenschuss, “Structure formation under steady-state isothermal planar elongational flow of n-eicosane: A comparison between simulation and experiment”, Phys. Rev. Lett. 96, 037802 (2006). [Link]
2005
[4] B.J. Edwards,* C. Baig, and D.J. Keffer, “An examination of the validity of nonequilibrium molecular-dynamics simulation algorithms for arbitrary steady-state flows”, J. Chem. Phys. 123, 114106 (2005). [Link]
[3] C. Baig, B.J. Edwards,* D.J. Keffer, and H.D. Cochran, “Rheological and structural studies of liquid decane, hexadecane, and tetracosane under planar elongational flow using nonequilibrium molecular-dynamics simulations”, J. Chem. Phys. 122, 184906 (2005). [Link]
[2] C. Baig, B.J. Edwards,* D.J. Keffer, and H.D. Cochran, “A proper approach for nonequilibrium molecular dynamics simulations of planar elongational flow”, J. Chem. Phys. 122, 114103 (2005). [Link]
2004
[1] C. Baig, Y.V. Kalyuzhnyi,* S.T. Cui, and H.D. Cochran, “Structure of a sheared soft-disk fluid from a nonequilibrium potential”, Phys. Rev. E 70, 061204 (2004). [Link]